Экосистема и ее свойства. Основные свойства экосистемы Основные свойства экосистемы кратко

Экосистемы и их основные свойства

Экосистема – это греческое слово oikos – дом, system – целое, то есть составленное из частей или соединение. Этот термин ввёл в экологию Анри Барри Тенсли (1935 г.). Он писал: «Хотя организмы могут претендовать на то, чтобы им уделяли основное внимание, однако, если глубже вдуматься, мы не можем отделить их от конкретной окружающей среды, вместе с которой они составляют единую физическую систему. Такие системы, с точки зрения эколога, являются основными единицами природы на земной поверхности» .А. Тенсли представлял экосистему как сочетание биотопа и биоценоза.

Следовательно, экосистема ─ это исторически сложившиеся в биосфере и на той именно территории или акватории открытые, но целостные и устойчивые системы живых (автотрофных продуцентов и гетеротрофов ─ консументов и редуцентов) и неживых (абиотической среды) компонентов.

По К. Вилли, под термином «экосистема» экологи понимают естественную единицу, представляющую совокупность живых и неживых элементов: в результате взаимодействия этих элементов создаётся стабильная система, где имеет место круговорот веществ между живыми и неживыми частями.

В данных определениях экосистема характеризуется потоками энергии и возможностью её накопления, внутренними и внешними круговоротами веществ, которые обладают способностью к регулированию всех процессов в ней (рис.3.7). Экологическая система считается основной (главной) функциональной единицей в экологии, так как в неё входят живые организмы и неживая среда, элементы, взаимовлияющие друг на друга и обеспечивающие необходимые условия для поддержания жизни в той форме, которая существует на нашей планете.


Плотояд- ные Траво- ядные Проду- центы Солнце

Дыхание, СО 2

Рис.3.7. Схема главных составных частей экосистемы
(по Е.А. Крикуновскому, 1995 г.)

Экосистема как природный комплекс, образованный живыми организмами и средой их обитания, связанные между собой обменом веществом и энергией, является одним из главных понятий в экологии.

Экосистемы различают по следующим рангам:

─ микросистемы (например, небольшой водоем, лужа, трухлявый пень в лесу и т.д.);

─ мезоэкосистемы (лес, река, пруд и т.д.);

─ макроэкосистемы (океан, континент, аэротоп);

─ глобальная экосистема (биосфера в целом).

Из данной иерархичности следует, что крупные экосистемы включают в себя экосистемы более низшего ранга.

Биоценоз и биотоп воздействуют друг на друга, что проявляется в основном в непрерывном обмене веществом и энергией как между двумя составляющими, так и внутри каждой из них. Экосистема же включает в себя сообщества (фитоценозы, зооценозы, микробиоценозы, микоценозы), объединенные пищевыми и хорологическими (пространственными) связями, а также такие факторы среды, как экотоп, климатоп и эдафотоп. Естественные экологические системы – это открытые системы, в которых рассматривают среду на входе и выходе (рис.3.8).

Постоянное существование организмов в любом ограниченном пространстве возможно лишь в экосистемах, внутри которых отходы жизнедеятельности одних видов организмов утилизируются другими видами. Следовательно, всякая экосистема, способная к длительному существованию, должна включать в себя автотрофы, гетеротрофы и редуценты (сапрофиты), питающиеся отмершим веществом, но даже такая экосистема не застрахована от гибели. Устойчивость экосистем определяется соответствием видового состава к условиям жизни и степенью развитости этих систем.


Среда

Система в своих границах

Переработанная


Энергия и вещество

Миграция организмов

На входе JF + S + OE = Экосистема

На выходе

Вещество и организм

Рис.3.8. Функционирование экосистемы (по Одуму, 1986 г.)

Возможные изменения среды сильно колеблются и зависят от многих переменных размеров системы (чем система больше, тем меньше она зависит от внешних воздействий); интенсивности потоков веществ и энергии (чем он интенсивнее, тем больше их отток и приток); сбалансированности автотрофных и гетеротрофных процессов (чем больше нарушено это равновесие, тем сильнее должен быть внешний приток веществ и энергии для её восстановления); стадии и степени развития экосистемы. По своей сути экологическая система представляет собой комплекс, в котором между абиотическими и биотическими элементами происходит постоянный обмен веществом, энергией и информацией.

Оценка качества экосистем. Экологическиезакономерности и основные понятия экологии способствуют определению качественного и количественного состояния экосистемы.

Под количественным состоянием экосистемы понимается её продуктивность, под качественным ─ устойчивость по отношению к неблагоприятным факторам воздействия. Эти же закономерности способствуют определению качественного и количественного состояния биоценозов той или иной экосистемы.

Согласно первой закономерности экосистема должна соответствовать особенностям среды, второй – биоценоз по возможности должен быть относительно дешёвым, третьей и четвертой – экосистема должна обеспечивать максимальную утилизацию и устойчивость. Например, если мы создаем в экосистеме промышленное производство, то мы должны делать оборотную систему водоснабжения; остаточные отходы производства – утилизировать и перерабатывать; остаточное же тепло – использовать для других технологических процессов, на обогрев теплиц и т.д. Академик С. Шварц предложил оценивать качество экосистем по пяти признакам: по биомассе, продуктивности, помехоустойчивости, скорости обмена и резервированию.

Биомасса всех основных составляющих должна быть высокой и соотнесенной с остальными компонентами экосистемы. Если взять агроэкосистему, то её особенностью является преобладание фитомассы над зоомассой, которое выражено в резкой форме, она обеспечивает продуцирование кислорода, производство продуктов животного и растительного происхождения.

Продуктивность экосистемы – это выход продукции с единицы площади, объема (биогеоценоза и экосистемы), когда достигается её максимум, она должна удовлетворять все потребности и сохранять экосистему в устойчивом состоянии. Как негативный пример можно привести бесконтрольную вырубку лесов, вследствие этого снижается биомасса лесных массивов и это может привести к уничтожению экосистемы в течение нескольких лет.

Помехоустойчивость – это устойчивость экосистемы к загрязнению до определенного предела, которое не выводит её из строя. В настоящее время большое количество экосистем крайне не устойчивы, в них можно видеть лишь две условно положительные стороны: они давали и дают нам возможность наращивать материальные блага и они же вызвали «экологический кризис». Устойчивость экосистемы подразделяют на резистентную устойчивость и упругую. Резистентная устойчивость (сопротивляемость) – это свойство (способность) экосистемы сопротивляться нарушениям, поддерживая свою структуру и функцию. Упругая устойчивость – способность системы быстро восстанавливаться после нарушения структуры и функции.

Скорость обмена веществом и энергией протекает в экосистеме с такой интенсивностью, что при большом загрязнении обеспечивается быстрая её биологическая очистка. Но скорость – очистки не самоцель! Например, избыточное хлорирование воды ускоряет процесс её обеззараживания, но соединения хлора в воде могут дать диоксины – супертоксиканты, опасные для живых организмов, в том числе и самого человека. Хлор разрушает зубную эмаль, а это приводит к кариесу зубов. Приём озонирования воды дороже, но относительно безопаснее для экосистемы и человека.

Резервирование – это способность экосистемы к быстрой перестройке и приспособлению к изменившимся условиям без потерь других положительных свойств. Человек должен стремиться создавать хорошие экосистемы повсюду, где требуется и где это возможно. Он должен не ухудшать, а улучшать окружающую природную среду: путем ликвидации очагов особо опасных заболеваний, резко сокращать площади размножения саранчи, остановить движение песков и т.д. Здесь уместно сослаться на принцип Ле Шателье-Брауна: при внешнем воздействии, выводящем экологическую систему из состояния устойчивого равновесия, равновесие всегда смещается в том направлении, при котором эффект воздействия ослабляется.

Пространственная структура экосистем вызвана тем, что автотрофные и гетеротрофные процессы обычно разделены в пространстве. Первые активно протекают в верхних слоях, где доступен солнечный свет, а вторые интенсивнее в нижних слоях (почвах и донных отложениях). Кроме того, они разделены и во времени, поскольку существует временной разрыв между образованием органических веществ растениями и минерализацией их консументами.

С точки зрения пространственной структуры в природных экосистемах можно выделить следующие ярусы:

- верхний, автотрофный ярус или зелёный пояс Земли , который включает растения или их части, содержащие хлорофилл: здесь происходит фиксация солнечной энергии, использование неорганических соединений и накопление энергии в сложных синтезируемых растениями веществах;

- нижний, гетеротрофный ярус или «коричневый пояс» Земли, представлен почвами, донными осадками, в которых преобладают процессы разложения мёртвых органических остатков растений и животных.

Экосистемы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая тем самым энтропию внутри себя, но увеличивая её внешне, в соответствии с законами термодинамики. Способность живых организмов снижать неупорядоченность внутри себя интерпретируется как способность накапливать отрицательную энтропию – негэнтропию.

Энергия в экосистемах. Энергия это одна из основных свойств материи, которая способна производить работу, а в широком понимании энергия сила. Она  источник жизни, основа и средство управления всеми природными системами, движущая сила мироздания. Фундаментальные законы термодинамики имеют универсальное значение в природе, а понимание этих законов важно для обеспечения эффективного подхода к проблемам природопользования.

Эксергия – это максимальная работа, которую совершает термодинамическая система при переходе из данного состояния в состояние физического равновесия с окружающей средой.

Эксергией называют полезную работу участвующей в каком-то процессе энергии, величина которой определяется степенью отличия какого-то параметра системы от его значения в окружающей среде.

Первый закон термодинамики – закон сохранения энергии – гласит: энергия не создаётся и не исчезает, а превращается из одной формы в другую. На земле энергия Солнца превращается при помощи фотосинтеза в энергию пищи. Экология рассматривает здесь только существующую связь между солнечным светом и экологическими системами, в которых происходит превращение энергии Солнца в энергию органического вещества.

Согласно второму закону термодинамики любой вид энергии в конечном счёте переходит в форму, наименее пригодную для использования и наиболее рассеивающуюся – энтропию, которая становится недоступной для использования. Для всех энергетических процессов характерен процесс перехода от более высокого уровня организации (порядка) к более низкому (беспорядку). Тенденция энергии к деградации выражается термином «возрастание энтропии ». Энтропия же является мерой беспорядка. Энергия пищи, поглощенная животными, частично идёт на протекание биохимических процессов в организме, а частично переводится в теплоту для обогрева тела.

Живая материя отличается от неживой способностью аккумулировать из окружающего пространства свободную энергию и преобразовывать её так, чтобы противостоять энтропии. В природе показателем качества энергии солнечного света считается образование более высококачественной формы энергии (табл.3.2).

Таблица 3.2. Качественное состояние получаемой энергии, ккал

Источник энергии Затраты энергии для получения более качественной энергии Солнечная радиация Биомасса растений Древесина Уголь Электроэнергия 1.0 0.2 кВтּч

Так, от 2000 ккал солнечной энергии, поступающей на листовую поверхность растений, получается 200 ккал пищевой энергии, а энергия, заключенная в древесине, составляет всего 20, в угле – 1,0 ккал. При переводе угольной энергии в электрическую энергию получается всего лишь только 0,2 кВт·ч.

Чтобы солнечная энергия выполняла ту же работу, которую может выполнять электрическая энергия, её качество необходимо повысить в 10 тыс. раз. На каждом новом уровне 90 % потенциальной энергии рассеивается, переходя в тепло. Человеку для физиологического функционирования в год требуется около 1 млн ккал энергии пищи. Человечество производит всего примерно 8∙10 15 ккал энергии (при населении 6,7 млрд человек), но эта энергия распределена по территории планеты крайне неравномерно. Например, в городе потребление энергии на человека достигает 80 млн ккал в год, это количество энергии распределяется на все виды деятельности (транспорт, домашнее хозяйство, промышленность), т.е. человек расходует в 80 раз больше энергии, чем необходимо для функционирования организма.

В настоящее время человечество находится в стадии энергетического кризиса и характер будущей цивилизации, его качество и состав лимитируются, в первую очередь, энергетическими затратами. Выход для человеческого общества из данного кризисного состояния ─ использование альтернативной энергии и крупномасштабное энергосбережение.

Закон максимилизации энергии (Г.Одум–Ю.Одум): в соперничесве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное её количество наиболее эффективным способом.

Морские экосистемы. Глубина океана достаточна большая, местами доходит до 11,5 км. В отличие от суши и пресных вод, морская экосистема непрерывна. Жизнь в океане существует во всех его уголках, но наиболее богата вблизи материков и островов. В океане практически отсутствуют абиотические зоны несмотря на то, что барьерами для передвижения животных являются температура, солёность и глубина.

Благодаря постоянно действующим ветрам-пассатам, в океанах и морях происходит постоянная циркуляция воды за счёт мощных течений (Гольфстрим – теплое, Калифорнийское – холодное и др.), что исключает дефицит кислорода в глубинах океана.

Наиболее продуктивны в Мировом океане места апвелинга. Апвелинг – процесс подъёма холодных вод с глубины океана, где ветры постоянно перемешивают тёплую воду у крутого материкового склона, взамен которой из глубины поднимается холодная вода, обогащённая биогенами. Там, где нет этого водообмена, биогенные элементы из погрузившихся органических остатков на длительное время остаются в донных отложениях. Высокопродуктивны и богаты они биогенами, за счёт привноса их с суши, воды эстуариев (дельт).
Ю. Одум называет это явление аутвелингом.

В прибрежной зоне весьма велика роль приливов и отливов, вызванных притяжением Луны и Солнца. Они обеспечивают заметную периодичность в жизни сообществ (биологические часы). Для морских водоёмов характерна устойчивая щелочная среда: рН = 8,2, но соотношение солей и солёность изменяются. В воде солоноватых устьев рек прибрежной зоны солёность значительно колеблется по сезонам года. Поэтому организмы в прибрежной зоне эвригалинны, в то время как в открытом океане стеногалинны.

Биогенные элементы – важный лимитирующий фактор в морской среде, где их содержится несколько частей на миллион частей воды. К тому же время пребывания их в воде вне организмов намного короче, чем натрия и магния и других элементов. Биогенные элементы, растворённые в воде быстро перехватываются организмами и попадают в их трофические цепи, они практически не попадают в гетеротрофную зону (не проходят биологический круговорот). Поэтому низкая концентрация биогенных элементов в морской воде не говорит об их всеобщем дефиците.

Главным фактором, который дифференцирует морскую биоту, является глубина воды в морях и океанах. В целом толщу морской воды в разрезе подразделяют на следующие зоны: эвфотическая зона – самая верхняя часть океана, куда проникает свет и где создаётся первичная продукция. Её мощность доходит в открытом океане до 200 м, а в прибрежной части – не более 30 м. Это сравнительно тонкая плёнка, которая отделяется компенсационной (до 1,0 – 1,5 км) зоной от значительно большей водной толщи, вплоть до самого дна –афотической зоны.

Так же как и в пресноводных лентических (текучих) экосистемах, всё население океана делится на планктон, нектон и бентос . Планктон и нектон, то есть всё, что живёт в открытых водах океана, образует так называемую пелагическую зону .

Биотическое сообщество каждой из перечисленных выше зон, кроме эвфотической, разделяется на бентосные и пелагические зоны. В них к первичным консументам относят зоопланктон, насекомых в море экологически заменяют ракообразные. Подавляющее число крупных животных – хищники. Их мало в пресноводных системах. Многие из них напоминают растения и отсюда их названия, например, морские лилии. Здесь широко развиты мутуализм и комменсализм. Все животные бентоса в своём жизненном цикле проходят пелагическую стадию в виде личинок.

Характеристика морских экосистем. Область континентального шельфа, неретическая область, ограничена глубиной 200 м, которая составляет около 8 % площади океана
(29 млн км 2). Прибрежная зона благоприятна по условиям питания, даже в дождевых тропических лесах нет такого разнообразия жизни как здесь. Очень богат кормом планктон за счёт личинок бентосной фауны. Личинки, которые остаются несъеденными, оседают на субстрат и образуют либо эпифауну (прикреплённую), либо инфауну (закапывающуюся).

Области апвелинга расположены вдоль западных пустынных берегов континентов. Они богаты рыбой и птицами, живущими на островах. Но при изменении направления ветра происходит цветение планктона и наблюдается массовая гибель рыб вследствие эвтрофикации.

Лиманы – это полузамкнутые прибрежные водоёмы, представляют собой экотопы между пресноводными и морскими экосистемами. Лиманы обычно входят в материковую (прибрежную) зону, подвержены приливам и отливам. Лиманы высокопродуктивны и являются ловушками биогенных веществ. Служат они местом откорма молоди и богаты целым комплексом морепродуктов (рыба, крабы, креветки, устрицы и т.д.). Попадая в сферу хозяйственной деятельности, теряют значительно свою продуктивность вследствие загрязнения водной среды.

Океанические области, эвфотическая зона открытого океана, бедна биогенными элементами. В известной мере эти воды по продуктивности можно приравнивать к наземным пустыням. Арктические и антарктические зоны намного продуктивнее, так как плотность планктона растёт при переходе от тёплых морей к холодным, и фауна рыб и китообразных значительно богаче.

Фитопланктон является первичным источником энергии в пищевых цепях пелагической области – продуцентом. Крупные рыбы и животные здесь являются преимущественно вторичными консументами, питающимися зоопланктоном. Продуцентом для зоопланктона являются как фитопланктон, так и планктоновые личинки моллюсков, морских лилий и т.д.

Видовое разнообразие фауны снижается с глубиной и тем не менее разнообразие рыб в зоне велико, несмотря на то, что практически лишена продуцентов. Разнообразие связано со стабильностью условий в абиссальной зоне (на глубине от 2000 до 5000 м) в течение длительного геологического времени, что замедлило эволюцию и сохранило многие виды из далёких геологических эпох.

Океан является колыбелью жизни на планете и ещё множество загадок хранят его водные толщи и океаническое ложе. Появление жизни в океане положило начало формированию биосферы. И сейчас, занимая более 2 / 3 поверхности суши, он определяет во многом, в сочетании с материковыми экосистемами, целостность современной биосферы Земли.

Общие свойства систем . Центральное понятие в экологии - экосистема отражает основополагающее представление этой науки о том, что природа функционирует как целостная система независимо от того, о какой среде идет речь: пресноводной, морской или наземной. Общая теория сложных систем, к которой относится и изучение интегральных свойств экосистем, начиналась с работ биолога Людвига фон Берталанфи в конце 40-х годов XX в. Системный подход к решению проблем, связанных с окружающей средой, приобретает все большую практическую значимость.

Под системой понимается упорядочение взаимодействующие и взаимозависимые компоненты, образующие единое целое .

Целое - это определенное единство элементов, имеющее свою структуру. Понятие «структура» отражает расположение элементов и характер их взаимодействия.

Системы имеют следующие специфические свойства:

Изоляция;

Интеграция;

Целостность;

Стабильность;

Равновесие;

Управление;

Устойчивость (гомеостаз);

Эмерджентность.

Эмерджентность (от англ. emergence - появление) - универсальная характеристика систем, в том числе экосистем, заключающаяся в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов. По мере объединения компонентов в более крупные функциональные единицы, у последних возникают новые свойства, отсутствовавшие на предыдущем уровне (уровне компонентов). Такие качественно новые, эмерджентные, свойства системного уровня организации нельзя предсказать исходя из свойств компонентов составляющих этот уровень или единицу.

Эмерджентные свойства систем возникают в результате взаимодействия компонентов, а не в результате изменения их природы. Учитывая эмерджентные свойства, для изучения целого не обязательно знать все его компоненты, что очень важно для экологии, так как многие экосистемы включают тысячи компонентов-популяций, досконально изучить, которые не представляется возможным. Поэтому на первое место по значимости выступают интегральные свойства целостных сложных экологических систем: суммарная биомасса, продукция и деструкция отдельных трофических уровней, без знания закономерностей, изменения которых нельзя описать поведение всей системы во времени и прогнозировать ее будущее.

Устойчивость саморегулирующихся систем определяет их способность возвращаться в исходное состояние после небольшого отклонения. В этом случае действует принцип Ле Шателье - Бpaунa : при внешнем воздействии, выводящем систему из устойчивого равновесного состояния, равновесие смещается в том направлении, в котором эффект внешнего воздействия ослабляется.

Существование систем немыслимо без прямых и обратных связей. Прямой называют такую связь, при которой один элемент (А) действует на другой (Б) без ответной реакции. Если ответная реакция существует, то говорят об обратной связи (рис. 12.1).

Рис. 12.1 Механизм обратной связи

Этот тип связи играет существенную роль в функционировании экосистем и определяет их устойчивость и развитие. Обратные связи бывают положительные и отрицательные.

Положительная обратная связь обусловливает усиление процесса в одном направлении. Например, после вырубки леса заболачиваются территории, появляются сфагновые мхи (влагонакопители), заболачивание усиливается. Отрицательная обратная связь вызывает в ответ на усиление действия элемента А увеличение противоположной по направлению силы действия элемента Б. Это наиболее распространенный и важный тип связей в природных экосистем. На них прежде всего базируются устойчивость и стабильность экосистем. Пример такой связи - взаимоотношение между хищником и жертвой. Увеличение численности популяции жертв как кормового ресурса создает условия для размножения и увеличения численности популяции хищников. Последние, в свою очередь, начинают более интенсивно уничтожать жертв, уменьшая их численность, и тем самым ухудшают собственные кормовые условия. В менее благоприятных условиях снижается рождаемость в популяции хищника и через некоторое время численность популяции хищников также уменьшается, в результате чего снижается давление на популяцию жертвы. Такая связь позволяет системе сохраняться в состоянии устойчивого динамического равновесия (т. е. саморегулирования).

Обычно различают три вида систем:

1) изолированные - существующие в определенных границах, через которые не происходит обмен веществ и энергии (такие системы создаются только искусственно);

2) закрытые - обменивающиеся со средой только энергией;

3) открытые - обменивающиеся со средой веществом и энергией (это природные экосистемы).

Наиболее важное значение общей теории систем для экологии как науки состоит в том, что она позволила создать новую научную методологию - системный анализ, при которой природные объекты представляются в виде систем. Последние выделяются исходя из целей исследования. С одной стороны, система рассматривается как единое целое, а с другой - как совокупность элементов. Задачи системного анализа состоят в выявлении:

Связей, которые делают систему целостной;

Связей системы с окружающими объектами;

Процессов управления системой;

Вероятности характера поведения исследуемого объекта (прогноз).

Любая система имеет следующие основные параметры:

Границы;

Свойства элементов и системы в целом;

Структуру;

Характер связей и взаимодействия между элементами системы, а также между системой и ее внешней средой.

Границы - наиболее сложная характеристика системы, обусловленная ее целостностью и определяемая тем, что внутренние связи и взаимодействия гораздо сильнее внешних. Последнее обстоятельство определяет устойчивость системы к внешним воздействиям.

Свойства элементов и системы в целом характеризуются качественными и количественными признаками, которые называют показателями.

Структура системы определяется соотношением в пространстве и во времени слагающих ее элементов и их связей. Пространственный аспект структуры характеризует порядок расположения элементов в системе, а временной отражает смену состояний системы во времени (т. е. показывает развитие системы). Структура выражает иерархичность (соподчиненность уровней) и организованность системы.

Характер связей и взаимодействия между элементами системы и системы с внешней средой представляет собой различные формы вещественного, энергетического и информационного обмена. При наличии связей системы с внешней средой границы открыты, в противном случае закрыты.

Экосистема . Живые организмы и их окружение (абиотическая среда обитания) неразделимо связаны друг с другом и находятся и постоянном взаимодействии, образуя экологическую систему (экосистему).

Экосистема - сообщество живых существ и их среда обитания, образующие единое функциональное целое на основе причинно-следственных связей между отдельными экологическими компонентами .

Основные свойства экосистем определяются их способностью осуществлять круговорот веществ и создавать биологическую продукцию, т. е. синтезировать органическое вещество. Природные экосистемы в отличие от искусственных, созданных человеком, при стабильных условиях окружающей среды могут существовать неограниченно долго, так как способны противостоять внешним воздействиям и поддерживать структурно-функциональное постоянство (гомеостаз). Крупные экосистемы включают в себя экосистемы меньшего ранга.

В зависимости от размеров занимаемого пространства экосистемы обычно подразделяют на:

Микроэкосистемы (небольшой водоем, ствол упавшего дерева в стадии разложения, аквариум и т. д.);

Мезоэкосистемы (лес, пруд, озеро, река и т. д.);

Макроэкосистемы (океаны, континенты, природные зоны и т. д.),

Глобальную экосистему (биосфера в целом).

Крупные наземные экосистемы, характерные для определенных географических природных зон, называются биомами (например, тайга, степь, пустыня и т.д.). Каждый биом включат целый ряд меньших по размерам, связанных друг с другом экосистем.

Экосистема состоит из двух основных блоков. Один из них - комплекс взаимосвязанных между собой популяций живых организмов, т. е. биоценоз, а второй - это совокупность факторов среды обитания, т.е. экотоп . Экосистема является функциональной единицей живой природы, включающей биотическую (биоценоз) и абиотическую (среда обитания) части экосистемы, связанные между собой непрерывным круговоротом (обменом) химических веществ, энергию для которых поставляет Солнце (рис. 12.2).

Рис. 12.2. Поток энергии и круговорот химических веществ в экосистеме

Фотосинтезирующие (фотоавтотрофы) организмы (растения, микроводоросли) синтезируют органические вещества из минеральных компонентов почвы, воды и воздуха, используя энергию солнечного света. Образованные в процессе фотосинтеза органические вещества служат растениям источником энергии, необходимым для поддержания своих функций, воспроизводства, а также строительным материалом, из которого они образуют свои ткани (фитомассу). Гетеротрофные организмы (животные, бактерии грибы) в процессе питания используют созданные фотоавтотрофами различные органические соединения для построения своего тела и в качестве источника энергии. В процессе обмена веществ у гетеротрофов происходят высвобождение запасенной химической энергии и минерализация органического вещества до диоксида углерода, воды, нитратов, фосфатов. Поскольку продукты минерализации органического вещества вновь используются автотрофами, возникает постоянный круговорот веществ в экосистеме.

Структура экосистем . Структура любой системы определяется закономерностями в соотношении и связях ее частей. В каждой экосистеме обязательно присутствуют два основных блока элементов: живые организмы и факторы окружающей их неживой среды. Совокупность организмов (растений, животных, микроорганизмов, грибов и т.д.) называют биоценозом или биотой экосистемы. Система взаимоотношений между организмами, а также между биотой и средой обитания, включающей абиотические факторы, определяет структуру экосистемы.

В составе любой экосистемы можно выделить следующие основные компоненты:

- неорганические вещества - минеральные формы углерода, азота, фосфора, вода и другие химические соединения, вступающие в круговорот;

- органические соединения - белки, углеводы, жиры и др.;

- воздушну, водную и субстратную среду , включающую климатический режим (температура и другие физико-химические факторы);

- продуценты - автотрофные организмы, создающие органическую пищу из простых неорганических веществ за счет энергии Солнца (фотоавтрофы), главным образом зеленые растения и одноклеточные микроскопические водоросли в воде, некоторые группы фотосинтезирующих бактерий и хемоавтотрофы, бактерии использующие энергию окислительно-восстановительных реакций (серобактерии, железобактерии и др.);

- консументы - травоядные и хищные гетеротрофные организмы, главным образом животные, которые поедают другие организмы;

- редуценты (деструкторы) - гетеротрофные организмы, преимущественно бактерии и грибы и некоторые беспозвоночные, разлагающие мертвые органические вещества.

Первые три группы компонентов (неорганические вещества, органические вещества, физико-химические факторы) составляют неживую часть экосистемы (биотоп), а остальные - живую часть (биоценоз). Три последних компонента расположенных относительно потока поступающей энергии, представляют собой структуру экосистем (рис. 12.3). Продуценты улавливают солнечную энергию и переводят ее в энергию химических связей органического вещества. Консументы, поедая продуцентов, используют эту энергию для активной жизнедеятельности и построения собственного тела. В результате вся энергия, запасенная продуцентами, оказывается использованной. Редуценты расщепляют сложные органические соединения до минеральных компонентов, пригодных для использования продуцентами (вода, углекислый газ и др.).

Рис. 12.3. Структура экосистемы, включающая поток энергии (двойная стрелка) и два круговорота веществ: твердых (толстая стрелка) и газообразных (тонкая стрелка)

Таким образом, структуру экосистем образуют три основных группы организмов (продуценты, консументы и редуценты), участвующих в кругoворотax твердых и газообразных веществ, трансформации и использовании энергии Солнца.

Одна из общих черт всех экосистем, будь то наземные, пресноводные, морские или искусственные экосистемы, - это взаимодействие автотрофных (продуценты) и гетеротрофных (консументы и редуценты) организмов, которые частично разделены в пространстве (пространственная структура экосистемы).

Автотрофные процессы (фотосинтез органического вещества растениями) наиболее активно протекают в верхнем ярусе экосистемы, где доступен солнечный свет. Гетеротрофные процессы (биологические процессы, связанные с потреблением органического вещества) наиболее интенсивно протекают в нижнем ярусе, в почвах и осадках, где накапливаются органические вещества.

Система пищевых взаимодействий между организмами формирует трофическую структуру (от греч. trophe - питание), которую для наземных экосистем можно разделить на два яруса:

1) верхний автотрофный ярус (самостоятельно питающийся), или "зеленый пояс", включающий растения или их части, содержащие хлорофилл, в котором преобладают фиксация энергии света, использование проcтыx неорганических соединений и накопление сложных органических соединений, и 2) нижний гетеротрофный ярус (питаемый другими), или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т. п.. в котором преобладаютиспользование, трансформация и разложение сложных органических соединений.

Функционирование автотрофов и гетеротрофов может быть разделено и но времени, так как использование продукции автотрофных организмов гетеротрофами может происходить не сразу, а с существенной задержкой. Например, в лесной экосистеме фотосинтез протекает преимущественно в кронах деревьев. При этом лишь небольшая часть, продуктов фотосинтеза немедленно и непосредственно перерабатывается гетеротрофами, питающимися листвой и молодой древесиной. Основная масса синтезированного органического вещества (в форме листьев, древесины и запасных питательных веществ в семенах, корнях) в конце концов попадает в почву, где эти вещества относительно медленно используются гетеротрофами. Прежде чем будет использовано все это накопленное органическое вещество, могут пройти многие недели, месяцы, годы или даже тысячелетия (если речь идет oб ископаемых видах топлива).

Следует учитывать, что организмы в природе живут для самих себя, а не для того, чтобы играть какую-либо роль в экосистеме. Свойства экосистем формируются благодаря совокупной деятельности входящих в нее растений и животных. Лишь учитывая это, мы можем понять ее структуру и функции, а также то, что экосистема реагирует на изменения факторов среды как единое целое.

Каждая экосистема характеризуется строго определенной видовой структурой - разнообразием видов (видовым богатством) и соотношением их численности или биомассы. Чем больше разнообразие условий среды обитания, тем больше количество видов в биоценозе. С этой точки зрения самыми богатыми по видовому разнообразию являются, например, экосистемы дождевых тропических лесов и коралловых рифов. Количество видов организмов, населяющих названные экосистемы, исчисляется тысячами. А в экосистемах пустынь существует всего несколько десятков видов.

Видовое разнообразие зависит также от возраста экосистем. В молодых развивающихся экосистемах, возникших, например, на безжизненном субстрате песчаных дюн, горных отвалом, пожарищ, количество видов крайне мало, однако по мере развития экосистем видовое богатство увеличивается.

Из общего числа видов, обитающих в экосистеме, обычно лишь немногие доминируют , т. е. имеют большую биомассу, численность, продуктивность или другие показатели значимости для экосистемы. Большая же часть видов в экосистеме характеризуется относительно низкими показателями значимости.

Не все виды одинаково влияют на свое биотическое окружение. Есть виды-эдификаторы, которые в процессе своей жизнедеятельности формируют окружающую среду для сообщества в целом и без них существование большинства других видов в экосистеме невозможно. Например, ель в еловом лесу является видом-эдификатором, так как создает своеобразный микроклимат, кислую реакцию почвы и специфические условия для развития других видов растений и животных, приспособленных к существованию в данных условиях. При смене елового леса (например, после пожара или вырубки) березовым экотоп на этой территории существенно меняется, что определяет смену всего биологического сообщества экосистемы.

Названия экосистем образуются исходя из важнейших параметров, определяющих характерные условия среды обитания. Так, для наземных экосистем названия включают названия видов-эдификаторов или доминирующих видов растений (ельник-черничник, злаково-разнотравные степные экосистемы и др.).

Функционирование экосистем. Экосистемы являются открытыми системами т. е. такими, которые получают энергию и вещество извне и отдают их во внешнюю среду, поэтому важная составная часть экосистемы - внешняя среда (среда на входе и среда на выходе). Живые организмы, входящие в экосистемы, чтобы существовать, должны постоянно пополнять и расходовать энергию. В отличие от веществ, непрерывно циркулирующих по разным компонентам экосистемы, энергия может быть использована только один раз, т. е. энергия проходит через экосистему в виде линейного потока.

Функциональная схема экосистемы отражает взаимодействие трех основных компонентов, а именно: сообщества, потока энергии и круговорота веществ. Поток энергии направлен только в одну сторону. Часть поступающей солнечной энергии преобразуется биологическим сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество. Но большая часть энергии деградирует: пройдя через систему, выходит в виде низкокачественной тепловой энергии называемой тепловым стоком. Энергия может накапливаться в экосистеме, затем снова высвобождаться или экспортироваться, но она не может использоваться вторично. В отличие от энергии биогенные элементы и вода могут использоваться многократно.

Односторонний поток энергии является результатом действия законов термодинамики. Первый закон термодинамики (закон сохранения энергии) гласит, что энергия может переходить из одной формы (солнечный свет) в другую (потенциальная энергия химических связей в органическом веществе), но она не исчезает и не создается заново, т. е. общее количество энергии в процессах остается постоянным. Второй закон термодинамики (закон энтропии) гласит, что в любых процессах превращения энергии некоторая ее часть всегда рассеивается в виде недоступной для использования тепловой энергии, поэтому эффективность самопроизвольного превращения кинетической энергии (например, света) в потенциальную, (например, в энергию химических связей в органическом веществе) всегда меньше 100 %.

Живые организмы преобразуют энергию, и каждый раз, когда происходит превращение энергии (например, переваривание пищи), часть ее теряется в виде тепла. В конечном счете, вся энергия, поступающая в биотический круговорот экосистемы, рассеивается в виде тепла. Однако живые организмы, населяющие экосистемы, не могут использовать тепловую энергию для совершения работы. Для этой цели они используют энергию солнечной радиации, запасенную в виде химической энергии в органическом веществе, созданном продуцентами в процессе фотосинтеза.

Пища, созданная в результате фотосинтетической активности зеленых растений, содержит потенциальную энергию, которая при использовании ее гетеротрофными организмами превращается в другие формы химической энергии.

Большая часть солнечной энергии, попавшей на землю, превращается в тепловую и лишь очень небольшая её часть (в среднем для земного шара не менее 1%) превращается зелёными растениями в потенциальную энергию химических связей в органическом веществе.

Весь животный мир Земли получает необходимую потенциальную химическую энергию из органических веществ, созданных фотосинтезирующими растениями, и большую её часть в процессе дыхания переводит в тепло, а меньшую вновь преобразует в химическую энергию заново синтезируемой биомассы. На каждом этапе передачи энергии от одного организма к другому её значительная часть рассеивается в виде тепла.

Баланс пищи и энергии для отдельного живого организма можно представить так:

Э п = Э д + Э пр + Э пв,

где Э п – энергия потребления пищи;

Э д – энергия дыхания;

Э пр – энергия прироста;

Э пв – энергия продуктов выделения.

Выделение энергии в виде тепла в процессе жизнедеятельности у плотоядных животных (хищников) невелико, а у травоядных более значительно. Например, гусеницы некоторых насекомых, питающиеся растениями, выделяют в виде тепла до 70 % поглощенной с пищей энергии. Однако при всем разнообразии величин расходов энергии на жизнедеятельность максимальные траты на дыхание составляют около 90 % всей энергии, потребленной в виде пищи. Поэтому переход энергии с одного трофического уровня на другой в среднем принимаем за 10 % энергии, потребленной с пищей. Эта закономерность известна, как правило, десяти процентов . Из этого правила следует, что цепь питания может иметь ограниченное количество уровней, обычно не более 4-5, пройдя через которые, почти вся энергия оказывается рассеянной.

Пищевые цепи. Внутри экосистемы созданное автотрофными организмами органическое вещество служит пищей (источником энергии и вещества) для гетеротрофов. Типичный пример: животное поедает растение. Это животное, в свою очередь, может быть съедено другим животным, и таким путем может происходить перенос энергии через ряд организмов - каждый последующий питается предыдущим, поставляющим ему сырье и энергию. Такая последовательность организмов называется пищевой цепью, а каждое ее звено - трофическим уровнем . Первый трофический уровень занимают автотрофы (первичные продуценты). Организмы второго трофического уровня называются первичными консументами, третьего - вторичными консументами и т. д.

Главное свойство цепи питания – осуществление биологического круговорота веществ и высвобождение запасенной в органическом веществе энергии.

Представители разных трофических уровней связаны между собой в пищевые цепи процессами односторонне направленной передачи биомассы (в виде пищи, содержащей запас энергии).

Пищевые цепи можно разделить на два основных типа:

1) пастбищные цепи , которые начинаются с зелёного растения и идут дальше к пасущимся животным, а затем к хищникам;

2) детритные цепи , которые начинаются с мелких организмов, питающихся мёртвым органическим веществом, и идут к мелким и крупным хищникам.

Пищевые цепи не изолированы друг от друга, они тесно переплетены в экосистеме образуя пищевые сети.

Экологические пирамиды. Для изучения взаимоотношений между организмами в экосистеме и для графического представления этих взаимоотношений удобнее использовать не схемы пищевых сетей, а экологические пирамиды, основанием которых служит первый трофический уровень (уровень продуцентов), а последующие уровни образуют этажи и вершину пирамиды. Экологические пирамиды можно отнести к трём основным типам:

1) пирамиды численности , отражающие численность организмов на каждом трофическом уровне;

2) пирамиды биомассы , характеризующие общую массу живого вещества на каждом трофическом уровне;

3) пирамиды энергии , показывающие величину потока энергии или продуктивность на последовательных трофических уровнях.

Для графического представления структуры экосистемы в виде пирамиды численности сначала подсчитывают число различных организмов на данной территории, сгруппировав их по трофическим уровням. После таких подсчетов становится очевидно, что численность животных прогрессивно уменьшается при переходе от второго трофического уровня к последующим. Численность растений первого трофического уровня тоже нередко превосходит численность животных, составляющих второй уровень. Два примера пирамид численности показаны на рис. 12.4, где длина прямоугольника пропорциональна количеству организмов на каждом трофическом уровне. Формы пирамид численностей сильно различаются для разных сообществ в зависимости от размеров составляющих их организмов (рис. 12.4).

В пирамидах биомасс учитывается суммарная масса организмов (биомасса) каждого трофического уровня, т. е. показаны количественные соотношения биомасс в сообществе (рис. 12.5). Цифрами обозначено количество биомассы в граммах сухого вещества на 1 м 2 . В этом случае размер прямоугольников пропорционален массе живого вещества соответствующего трофического уровня, отнесённой к единице площади или объёма. Однако величина биомасс трофического уровня не даёт никакого представления о скорости её образования (продуктивности) и потребления. Например, продуцентам небольших размеров (водоросли) свойственна высокая скорость роста и размножения (увеличение биомассы продуцентов), уравновешенная интенсивным потреблением их в пищу другими организмами (уменьшение биомассы продуцентов). Таким образом, хотя биомасса в конкретный момент может быть малой продуктивность при этом может быть высокой.

Из трех типов экологических пирамид пирамида энергии дает наиболее полное представление о функциональной организации сообщества.

В пирамиде энергии (рис. 12.6), где цифрами обозначено количество энергии (кДж/м 2 в год), размер прямоугольников пропорционален энергетическому эквиваленту, т. е. количеству энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за конкретный период. Пирамида энергии отражает динамику прохождения массы пищи через пищевую (трофическую) цепь, что принципиально отличает её от пирамид численности и биомассы отражающих статическое состояние экосистемы (количество организмов в данный момент).

Продуктивность экосистем – образование органического вещества в виде биомассы животных, растений и микроорганизмов, составляющих биотическую часть экосистемы, в единицу времени на единицу площади или объема. Способность создавать органическое вещество (биологическая продуктивность ) - одно из важнейших свойств организмов, их популяций и экосистем в целом.

За счет энергии света при фотосинтезе создается основная, или первичная, продукция экосистемы. Первичная продуктивность – это скорость, с которой солнечная энергия усваивается продуцентами (растениями) в процессе фотосинтеза, накапливаясь в форме органических веществ. Иными словами, это величина скорости прироста биомассы растений.

Принято выделять четыре последовательные стадии процесса производства органического вещества:

1) валовая первичная продуктивность - общая скорость фотосинтеза, т. е. скорость образования всей массы органических веществ продуцентами, включая и то количество органического вещества, которое было израсходовано продуцентами на поддержание деятельности (Р G);

2) чистая первичная продуктивность - скорость накопления органического вещества в растительных тканях за вычетом того органического вещества, которое было синтезировано растениями и использовано на поддержание своей жизнедеятельности (Р N);

3) чистая продуктивность сообщества - скорость накопления органического вещества, не потребленного гетеротрофами (животными и бактериями), в сообществе за конкретный период (например, прирост биомассы растений к концу летнего сезона).

4) вторичная продуктивность - скорость накопления энергии (в виде биомассы) на уровне консументов (животных), которые не создают органическое вещество из неорганических (как в случае фотосинтеза), а лишь используют органические вещества, полученные с пищей, часть из них расходуя на поддержание жизнедеятельности а остальные превращая в собственные ткани.

Высокие скорости продукции органического вещества встречаются при благоприятных факторах окружающей среды, особенно при поступлении дополнительной энергии извне, уменьшающей собственные затраты организмов на поддержание жизнедеятельности. Например, в прибрежной зоне моря дополнительная энергия может поступать в форме энергии приливов, приносящих малоподвижным организмам частицы органического вещества.

Дня наглядного представления региональных особенностей функционирования биосферы на рис. 12.7 приведена модель продуктивности крупных экосистем биосферы в виде турбины, работающей от потока солнечных лучей. Ширина колеса турбины для суши соответствует проценту суши в конкретной природной зоне, ширина колеса для моря взята произвольно. Лопатки этой модельной турбины (виды растений в конкретной экосистеме) воспринимают солнечный свет в процессе фотосинтеза и обеспечивают энергией все жизненные процессы в экосистемах. При этом сухопутная турбина имеет наибольшее количество лопаток (видов растений) в области тропиков, где 40 тыс. видами растений может вырабатываться годичная биологическая продукция в 10 11 т органического вещества. В тропических экосистемах суши в среднем за год вновь создается около 800 г/м 2 углерода. Морские экосистемы (рис. 12.7) наиболее продуктивны в умеренных бореальных областях, где в год образуется около 200 г углерода на 1 м 2 .

Величина биологической продуктивности является определяющей для большинства систем классификации водоемов по уровню трофности, т. е. обеспеченности питательными веществами для развития биоценоза. Уровень трофности водоема определяется по содержанию основного фотосинтетического пигмента (хлорофилла), по величине общей биомассы и по скорости продукции органического вещества. Согласно этой классификации выделяют четыре типа озер: олиготрофные, эвтрофные, мезотрофные и гипертрофные (табл. 12.1).

В предложенной системе классификации уровень биологической продуктивности (трофность) водоёмов тесно связан с абиотическими факторами (глубина, цветность, прозрачность водоема, наличие кислорода в придонных слоях воды, кислотность воды (рН), концентрация биогенных элементов и пр.), с географическим положением водоема и характером водосборного бассейна.

Олиготрофные водоёмы (от греч.- незначительный, бедный) содержат незначительное количество биогенных веществ, имеют высокую прозрачность низкую цветность, большую глубину. Фитопланктон в них развит незначительно, так как автотрофные организмы не обеспечены минеральным питанием, главным образом азотом и фосфором. Синтезированное в водоёме органическое вещество (автохтонное вещество ) практически полностью (до90..95%) подвергается биохимическому распаду. В результате в донных отложениях количество органического вещества небольшое, поэтому в придонных слоях воды содержание кислорода высокое. В водоеме преобладают пастбищные трофические цепи, микроорганизмов мало и деструкционные процессы выражены слабо. Подобные озера характеризуются большими размерами и большой глубиной.

Эвтрофные водоемы (от греч. eutrophia хорошее питание) характеризуются повышенным содержанием биогенных элементов (азот и фосфор), поэтому фитопланктон обеспечен минеральным питанием и интенсивность продукционных процессов высокая. С увеличением степени эвтрофирования уменьшаются прозрачность и глубина зоны фотосинтеза. В верхних слоях воды часто возникает избыток кислорода благодаря высокой скорости фотосинтеза, тогда как в придонных слоях воды - значительный дефицит кислорода из-за использования его микроорганизмами в процессах окисления органического вещества. В водоеме все большее значение приобретают детритные цепи питания.

Мезотрофный тип (от греч. mesos - средний) - промежуточный тип водоемов между олиготрофным и эвтрофным. Обычно мезотрофные водоемы возникают из олиготрофных и превращаются в эвтрофные. Во многих случаях этот процесс связан с эвтрофикацией - повышением уровня первичной продукции вод благодаря увеличению в них концентрации биогенных элементов, главным образом азота и фосфора. Поступление биогенных элементов в водоемы увеличивается в результате смывания с полей удобрений, а также попадания в них промышленных и коммунальных стоков.

Гипертрофные водоемы (от греч. hyper - над, сверх) характеризуются очень высоким уровнем первичной продукции и, как следствие высокой биомассой фитопланктона. Прозрачность и содержание кислорода в водоемах минимальные. Содержание большого количества органического вещества приводит к массовому развитию микроорганизмов, которые преобладают в биоценозе.

Гомеостаз экосистемы. Экосистемы, подобно входящим в их состав популяциям и организмам, способны к самоподдержанию и саморегулированию. Гомеостаз (от греч. подобный, одинаковый) – способность биологических систем противостоять изменениям и сохранять динамическое относительное постоянство состава и свойств. Нестабильность среды обитания в экосистемах компенсируется биоценотическими адаптивными механизмами.

Наряду с потоками энергии и круговоротами веществ экосистему характеризуют развитые информационные сети, включающие потоки физических и химических сигналов, связывающих все части системы и управляющих ею как единым целым. Поэтому можно считать, что экосистемы имеют и кибернетическую природу.

В основе гомеостаза лежит принцип обратной связи, который можно продемонстрировать на примере зависимости плотности популяции от пищевых ресурсов. Обратная связь возникает, если «продукт» (численность организмов) оказывает регулирующее влияние на «датчик» (пищу). В данном примере количество пищевых ресурсов определяет скорость прироста популяции. При отклонении плотности популяции от оптимума в ту или иную сторону увеличивается рождаемость или смертность, в результате чего плотность приводится к оптимуму. Такая обратная связь, уменьшающая отклонение от нормы, называется отрицательной обратной связью.

Помимо систем обратной связи стабильность экосистемы обеспечивается избыточностью функциональных компонентов. Например, если в сообществе имеется несколько видов автотрофов, каждый из которых характеризуется своим температурным оптимумом, то при колебаниях температуры окружающей среды скорость фотосинтеза сообщества в целом будет оставаться неизменной.

Гомеостатические механизмы действуют в определенных пределах, за которыми уже ничем не ограничиваемые положительные обратные связи приводят к гибели системы, если невозможна дополнительная настройка. По мере нарастания стресса система, продолжая оставаться управляемой, может оказаться неспособной к возвращению на прежний уровень.

Область действия отрицательной обратной связи можно изобразить в виде гомеостатического плато (рис. 12.8). Оно состоит из ступенек; в пределах каждой ступеньки действует отрицательная обратная связь. Переход со ступеньки на ступеньку может произойти в результате изменения в «датчике». Так, увеличение или уменьшен

Структура экосистем

Определение 1

Экосистема - это совокупность консументов, продуцентов, детритофагов, которые взаимодействуют с окружающей их средой и друг с другом посредством обмена энергией, веществом и информацией таким образом, что данная единая система хранит устойчивость.

Основа экосистем - живые вещества, характеризующиеся биотической структурой, и среды обитаний, обусловленные совокупностью экологических факторов.

Несмотря на разнообразие экосистем, все они владеют структурными сходствами. В любой из них можно выделять фотосинтезирующие растение - продуценты, разные уровни консументов, редуцентов и детритофагов, которые и составляют биотическую структуру экосистем.

Живая и неживая природа, находящаяся вокруг растений, человека и животных, носит название среда обитания. Масса некоторых компонентов среды, воздействующих на организмы, называются экологическими факторами. По природе генезиса выделяют биотические, абиотические и антропогенные факторы.

Свойства экосистем

Основные свойства экосистем – это способность реализовывать круговорот вещества, противостояние наружным влияниям, производство биологических продукций.

Часто выделяют:

  1. микроэкосистемы (небольшой водоем), которые могут существовать, пока в них наличествуют живые организмы, которые способны выполнять круговорот вещества;
  2. мезоэкосистемы (река);
  3. макроэкосистемы (океан);
  4. а также биосферу - глобальная экосистема.

Более значительные экосистемы при этом содержат в себе экосистемы младшего ранга. Экосистемы или биогеоценозы обычно состоят из нескольких блоков (чаще двух). Первые блоки, «биоценозы », включают в себя взаимосвязанные организмы различных видов, вторые блоки, «биотопы», или «экотоны», – среду обитания.

Каждые биоценозы включают в себя массу видов, но показанных не отдельными индивидуумами, а популяциями, порой их частями. Популяции – это обособленные части вида, занимающего какое-то установленное пространство и способные к саморегулированию, поддерживанию наилучшей численности индивидуумов вида.

Замечание 1

В экологии довольно часто употребляют также термин «сообщество», содержание которого неоднозначно. Под ним подразумевают совокупности взаимосвязанных организмов всевозможных видов, а также похожую совокупность только растительных (фитоценоз, растительное сообщество), животных организмов или микроорганизмов (микробоценоз).

Функционирование экосистем

Существенные структурные черты экосистемы обусловливают три существенных принципа или условия функционирования экосистемы:

  • наличия потоков солнечной энергии;
  • существования круговоротов биологических веществ;
  • снижения биомассы при увеличении трофического уровня.

Первый принцип - экосистема существует за счет незагрязняющей окружение и почти постоянной солнечной энергии, число которой сравнительно избыточно и постоянно. До индустриальной революции человечество обеспечивало свое существование, применяя энергию домашнего животного, ветра, дров и воды, т. е. ту же солнечную энергию. Массовое употребление источников ископаемой энергии, возникшее ориентировочно 250 лет назад, а также употребление ядерной энергии, несомненно, нарушает принцип первый и ведет к переменчивому развитию экосистемы.

Второй принцип - в природных экосистемах употребление ресурсов и освобождение от отходов реализовывают в рамках круговоротов всех химических компонентов. Но, все-таки, их соотношение утвердилось в течение колоссального промежутка времени, в течение которого формировалась жизнь на планете. Людская же деятельность привносит в экосистему большое количество различных химических соединений, переработать которые утвержденные экосистемы не способны.

Третий принцип - чем значительнее биомасса популяций, тем ниже соответствующий и занимаемый ею трофический уровень. Но количество людей растет с большой скоростью и превосходит 90 млн человек в год. Так как гигантская масса людей, особенно в цивилизованных странах, причисляют к третьим трофическим уровням, т. е. едят мясо, то требуется большая площадь сельскохозяйственных насождений, чтобы ублаготворить пищевые надобности. Более или менее натурально третий принцип осуществляется немногими.

Пример 1

В Монголии, например, где народонаселение страны составляет примерно 2,5 млн при количестве скота 35 млн, последние совершенно снабжены пастбищным пространством. В прочих же странах требуется беспрерывное повышение посевных участков, что приведет к истреблению лесов, разбитию почв и загрязнениям среды нехарактерным ей химическим элементом.

Согласно общей теории систем экосистема обладает общими свойствами, характерными для сложных систем. К таким свойствам относятся: эмерджентность, принцип необходимого разнообразия элементов, устойчивость, принцип неравновесности, вид обмена ве­ществ или энергии, эволюция.

Эмерджентность (от англ, emergence - неожиданно возникаю­щий) системы - степень несводимости свойств системы к свойствам составляющих ее элементов. Свойства системы зависят не только от составляющих ее элементов, но и от особенностей взаимодействия между ними (например, явление синергизма, когда при взаимодей­ствии некоторых токсичных соединений получаются еще более ядови­тые вещества).

Принцип необходимого разнообразия элементов сводится к то­му, что любая система не может состоять из абсолютно одинаковых элементов, более того, разнообразие элементов, ее составляющих, является необходимым условием функционирования. Нижний предел разнообразия равен двум, верхний - стремится к бесконечности. Разнообразие и наличие разных фазовых состояний веществ, состав­ляющих экосистему, определяют ее гетерогенность.

Устойчивость динамической системы и ее способность к са­мосохранению зависит от преобладания внутренних взаимодействий над внешними. Если внешнее воздействие на биологическую систему превосходит энергетику ее внутренних взаимодействий, то это может вызвать необратимые изменения или гибель системы. Устойчивое или стационарное состояние динамической системы поддерживается непрерывно выполняемой внешней работой, для чего необходимы приток энергии, ее преобразование в системе и отток за пределы системы.

Принцип неравновесности сводится к тому, что системы, функ­ционирующие с участием живых организмов, являются открытыми, поэтому для них характерно поступление и отток энергии и вещес­тва, что невозможно осуществить в условиях равновесного состоя­ния. Следовательно, любая экосистема представляет собой открытую, динамическую, неравновесную систему.

Понятие равновесия является одним из основных положений в науке. С точки зрения такой науки, как синергетика (от греч. synergos - вместе действующий; междисциплинарная область иссле­дований процессов самоорганизации и самодезорганизации в различ­ных системах, в том числе в живых, например, в популяциях), имеются следующие различия между равновесной и неравновесной системами:

– Система реагирует на внешние условия.

– Поведение системы случайно и не зависит от начальных усло­вий, но зависит от предыстории.

– Приток энергии создает в системе порядок, следовательно, эн­тропия ее уменьшается.

– Система ведет себя как единое целое.

Система может находиться в состоянии равновесности и неравновёсности; при этом ее поведение существенно различается.

В соответствии со вторым законом термодинамики к равновесно­му состоянию приходят все закрытые системы, то есть системы, не получающие энергии извне. При отсутствии доступа энергии извне система стремится к состоянию равновесия, при котором энтропия равна нулю. В случае когда система находится в неравновесном сос­тоянии, создаются условия формирования новых структур, для кото­рых необходимо следующее:

1) открытость системы;

2) неравновес­ное ее состояние;

3) наличие флуктуации.

Чем сложнее система, тем более многочисленны типы флуктуации, которые могут привести ее в неустойчивое состояние. Однако в сложных системах существуют связи между частями, которые позволяют системе сохранять устой­чивое состояние. Соотношением между устойчивостью, обеспечиваю­щейся взаимосвязью между частями, и неустойчивостью из-за нали­чия флуктуации определяется порог устойчивости системы. Если этот порог превышается, система попадает в критическое состояние, кото­рое называется точкой бифуркации. В данной точке система стано­вится неустойчивой относительно флуктуации и может перейти в но­вое состояние устойчивости. Это положение имеет огромное значе­ние в эволюции экосистем. В точке бифуркации система как бы колеблется между выбором одного из нескольких путей эволюции.

Подавляющее большинство систем в природе относится к откры­тым, обменивающимся с окружающей средой энергией, веществом и информацией. Главенствующая роль в природных процессах принад­лежит не порядку, стабильности и равновесию, а неустойчивости и неравновесности, то есть все системы флуктуируют. В точке бифурка­ции система не выдерживает и разрушается, и в этот момент времени невозможно предсказать, в каком состоянии она будет находиться:

станет ли состояние системы хаотическим или она перейдет на но­вый, более высокий уровень неупорядоченности.

Принцип равновесия в живой природе играет огромную роль. Смещение равновесия между видами в одну сторону может привести к исчезновению обеих видов. Например, уничтожение хищников мо­жет привести к уничтожению жертв, давление которых на окружаю­щую среду может возрасти до такой степени, что им не хватит пищи. В природе наблюдается огромное количество равновесий, которые поддерживают общее равновесие в природе.

Равновесие в живой природе не статично, а динамично и пред­ставляет собой движение вокруг точки устойчивости. Если данная точка устойчивости не меняется, то такое состояние называется гомеостазом (от греч. homoios - тот же самый, погожий и stasis - не­подвижность, стояние). Гомеостаз - способность организма или системы поддерживать устойчивое (динамическое) равновесие в из­меняющихся условиях среды.

Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии склонна развиваться в сто­рону устойчивого состояния. Гомеостаз, существующий в природе, осуществляется автоматически за счет механизмов обратной связи. Молодые системы с неустоявшимися связями, как правило, подвер­жены резким колебаниям и менее способны противостоять внешним возмущениям по сравнению со зрелыми системами, компоненты ко­торых успели приспособиться друг к другу, то есть прошли эволюци­онные приспособления.

Естественное равновесие означает, что экосистема сохраняет свое стабильное состояние и некоторые параметры неизменными, несмотря на воздействие факторов внешней среды. Так как экосисте­ма представляет собой открытую систему, то ее устойчивое состоя­ние означает, что поступление вещества и поток энергии на входе и выходе сбалансированы.

Под воздействием на экосистему внешних факторов она переходит от одного состояния равновесия к другому. Такое состояние называет­ся устойчивым равновесием. По многочисленным данным, экологичес­кая обстановка на нашей планете не всегда была одной и той же. Бо­лее того, она испытывала резкие перемены всех ее компонентов. Это можно продемонстрировать на примере появления кислорода в атмо­сфере. Известно, что ультрафиолетовое излучение Солнца, губительное для живых организмов, породило химическую эволюцию, благодаря ко­торой возникли аминокислоты. Под воздействием ультрафиолетового излучения процессы разложения водяного пара привели к образованию кислорода и создали слой озона, который препятствовал проник­новению ультрафиолетовых лучей на поверхность Земли. До тех пор, пока не было атмосферного кислорода, жизнь могла развиваться толь­ко под защитой слоя воды, который был органичен глубиной, на кото­рую проникали солнечные лучи. Под воздействием давления отбора появились фотосинтезирующие организмы, которые синтезировали ор­ганическое вещество и кислород. Первые многоклеточные организмы появились после того, как содержание кислорода в атмосфере достигло 3 % от современного содержания. Образование атмосферы, содержа­щей кислород, привело к новому состоянию устойчивого равновесия. Благодаря способности зеленых растений водных экосистем продуци­ровать кислород в количествах, превышающих их потребности, созда­лись условия для возникновения жизни на суше и быстрого заселения организмами всей поверхности Земли. Это в свою очередь создало ус­ловия, при которых потребление и образование кислорода уравнялось и достигло отметки 20 %. Затем наблюдались колебания отношений кислорода к углекислому газу, и, вероятно, на определенной стадии развития произошло повышение содержания углекислого газа в атмос­фере, что послужило толчком к образованию ископаемого топлива. Далее соотношение кислорода и углекислого газа опять пришло в коле­бательное стационарное состояние. Бурное развитие промышленности, деградация и преобразование человеком экосистем, сжигание ископа­емого топлива и в результате - избыточное образование углекислого газа может опять сделать это соотношение нестабильным.

Следовательно, равновесие - это неотъемлемый элемент функ­ционирования природы, с которым человек должен считаться как с объективным законом природы, значение которого он только начинает осознавать.

По виду обмена веществом и энергией с окружающей средой систе­мы классифицируют следующим образом: 1) изолированные системы (обмен невозможен); 2) замкнутые системы (обмен веществом невоз­можен, а обмен энергией может происходить в любой форме); 3) откры­тые системы (возможен любой обмен веществом и энергией).

Системы, которые взаимосвязаны потоками вещества, энергии и информации, носят название динамических. Любая живая система представляет собой динамическую открытую систему.

Принцип эволюции: возникновение, существование и развитие всех экосистем обусловлено эволюцией. Динамические самоподдер­живающиеся системы эволюционируют в сторону усложнения и воз­никновения системной иерархии (образование подсистем). Эволюция любой экосистемы ведет к увеличению суммарного потока энергии, проходящей через нее. С увеличением разнообразия и сложности системы происходит ускорение эволюции, что выражается в более быстром прохождении ступеней, эквивалентных по качественным сдвигам (Акимова, Хаскин, 1998).

Все без исключения экосистемы и даже самая крупная - био­сфера - являются открытыми, поэтому для своего функционирова­ния они должны получать и отдавать энергию. По этой причине кон­цепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержа­ния потоков энергии на входе и выходе, то есть реальная функциони­рующая экосистема должна иметь вход и, в большинстве случаев, пути оттока переработанной энергии и веществ.

Масштабы изменений среды на входе и выходе сильно варьиру­ются и зависят от:

– размеров системы: чем она меньше, тем больше зависит от внешних воздействий;

– интенсивности обмена: чем интенсивнее обмен, тем больше при­ток и отток;

– сбалансированности автотрофных и гетеротрофных процессов: чем сильнее нарушено это равновесие, тем больше должен быть при­ток энергии извне;

– стадии и степени развития системы: молодые системы отличают­ся от зрелых.

Энергия солнечного света поступает в экосистему, где фотоавтотрофными организмами превращается в химическую энергию, ис­пользуемую для синтеза органических соединений из неорганических. Поток энергии направлен в одну сторону: часть поступающей энергии Солнца преобразуется сообществом и переходит на качественно бо­лее высокую ступень, трансформируясь в органическое вещество, ко­торое представляет собой более концентрированную форму энергии, чем солнечный свет; большая же часть энергии проходит через сис­тему и покидает ее. В принципе, энергия может накапливаться, затем высвобождаться или экспортироваться, как показано на схеме (рис. 1), но не может использоваться вторично.

В отличие от энергии элементы питания и вода, необходимые для жизни, могут использоваться многократно. После отмирания живых организмов органические вещества разлагаются и опять превраща­ются в неорганические соединения. В совокупности экосистему мож­но представить как единое целое, в котором биогенные вещества из абиотического компонента включаются в биотический и обратно, то есть происходит постоянный круговорот веществ с участием живого (биотического) и неживого (абиотического) компонентов.

Для стабильного и длительного функционирования экосистемы особенно важное значение имеют обратные связи, обеспечивающие ее авторегуляцию и саморазвитие. Поэтому независимо от вида сис­темы ее функционирование возможно только при наличии прямых (взаимная стимуляция роста и развития организмов) или обратных (например, угнетение развития популяции в результате давления хищника) связей.

В саморегулирующихся системах, к которым относятся и экосисте­мы, важная роль принадлежит отрицательным обратным связям. На принципе отрицательной обратной связи базируются все механизмы физиологических функций в любом организме и поддержание посто­янства внутренней среды и внутренних взаимосвязей любой саморе­гулирующейся системы.

Рассмотрим это положение на примере самоочищения водоемов. Допустим, что под влиянием внешних факторов (поступление в водо­ем плодородной почвы и элементов питания) началось усиленное развитие фитопланктона. Это приводит к усилению роста зоопланкто­на и уменьшению концентрации минеральных веществ, что способ­ствует более быстрому выеданию фитопланктона и уменьшению его роста. Через некоторое время происходит снижение размножения животных из-за недостатка пищи. Временное увеличение биомассы гидробионтов ведет к нарастанию массы детрита, который, являясь пищей для бактерий, вызывает их усиленное размножение. Бактерии, в свою очередь, разлагают детрит и тем самым высвобождают эле­менты питания. Таким образом, цикл замыкается и в водоеме вновь появляются условия для усиленного развития фитопланктона. Систе­ма в целом имеет отрицательный обратный знак.

Положительные обратные связи, наоборот, не способствуют регу­ляции, а вызывают дестабилизацию систем, приводя их либо к угнетению и гибели, либо к ускорению роста, за которым, как правило, следуют срыв и разрушение. Например, в любом растительном сооб­ществе плодородие почвы, урожай растений, количество отмерших растительных остатков и образовавшегося гумуса составляет контур обратных положительных связей. Такая система находится в неустой­чивом равновесии, так как потеря почвы и элементов питания в ре­зультате эрозии или изъятие части урожая без возмещения выноса питательных веществ дает толчок к снижению плодородия почв и продуктивности растений. С этим явлением столкнулись наши предки в эпоху подсечно-огневого земледелия, когда в результате изъятия продукции без возмещения выноса резко снижалось плодородие почв, что вынуждало людей оставлять одни участки и осваивать новые.

В сложных экосистемах всегда имеется сочетание контуров обоих знаков. В случае наличия контуров с большим числом связей реали­зуется правило, которое гласит: при четном числе последовательных отрицательных связей контур приобретает положительную обратную связь (минус и минус дают плюс). Однако развитие и устойчивое функционирование экосистем в итоге определяется наличием конту­ров обратной связи. Для изменения поведения системы важное зна­чение имеет добавление или изъятие связей, которые могли бы из­менить знак системы (Акимова, Хаскин, 1998).

Таким образом, составляющие экосистемы - это поток энергии, круговорот веществ, биотический и абиотический компоненты и уп­равляющие петли обратной связи.


Лекция 5,6

Структура экосистемы

Структура экосистемы представляет собой компоненты, входящие в ее состав, их связи между собой и с элементами природной среды.

С биологической точки зрения в составе экосистемы выделяют следующие компоненты:

неорганические вещества (С, N 2 , CO 2 , Н 2 О и т.д.), включающиеся в круговорот;

органические соединения (белки, углеводы, липиды и т.д.), свя­зывающие биотическую и абиотическую части; I

воздушную, водную и субстратную среду, а так же климатичес­кий режим и другие физические факторы среды;

продуценты - автотрофные организмы, в основном зеленые растения, которые могут производить органические вещества из про­стых неорганических соединений;

консументы - фаготрофы (от греч. phagos - пожиратель) гете­ротрофные организмы, в основном животные, питающиеся другими организмами или частицами органического вещества;

редуценты - сапротрофы (от греч. sapros - гнилой), деструкто­ры, гетеротрофные организмы, в основном бактерии и грибы, получа­ющие энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлекаемого сапрофитами из растений и дру­гих организмов. Разложение осуществляется до простых минераль­ных веществ, которые могут использоваться продуцентами.

С точки зрения трофической (от греч. tropne - питание) структу­ры экосистему можно разделить по вертикали на два яруса:

1) верхний - автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения либо их части, содержа­щие хлорофилл, где преобладает фиксация энергии Солнца, использу­ются простые неорганические соединения и происходит накопление сложных органических соединений;

2) нижний - гетеротрофный (питаемый другими) ярус, или «ко­ричневый пояс» почв и осадков, разлагающихся частей отмерших организмов, в котором преобладают использование, трансформация и разложение сложных соединений.

Особенно четко эти два трофических яруса представлены в глубо­ководных водоемах (океанах, морях, озерах).

Экосисте́ма , или экологи́ческая систе́ма (от древнегреческого οἶκος - жилище, местопребывание и σύστημα - система) - биологическая система, состоящая из сообщества живых организмов (биоценоз ), среды их обитания (биотоп ), системы связей, осуществляющей обмен веществом и энергией между ними.

Ученые дифференцируют экосистемы на микроэкосистемы (например, дерево), мезоэкосистемы (лес, пруд) и макроэкосистемы (океан, континент). Глобальной экосистемой стала биосфера.

Существуют свойства-признаки, которые позволяют определить понятие экосистемы, выступающей в качестве объекта правового регулирования. К ним относятся:

1. Замкнутость экосистемы . Ее самостоятельное функционирование. Можно сказать, что, например, капля воды, лес, море и т.д. являются экосистемами, поскольку в каждом из этих объектов функционирует собственная устойчивая система организмов (инфузорий в капле, рыб в море и т.п.). Замкнутость экологических систем обязывает всех природопользователей учитывать экологические последствия своих действий даже в том случае, если нет видимых проявлений воздействия на природу. Так, прокладка дороги на открытой местности, на первый взгляд, не влияет на окружающую природную среду. Но при определенных условиях дорога может стать источником экологического бедствия, например, если она будет проложена без учета стока паводковых вод, которые, накапливаясь, могут разрушить земляной покров.

2. Взаимосвязь экосистем . Этот признак обусловливает необходимость комплексного подхода при использовании природных объектов, который на практике получил название ландшафтного. Например, при отводе земель под пахотные угодья или проведении мелиорации необходимо учитывать миграционные пути представителей дикой фауны, сохранять нетронутыми отдельные кустарники, болота, перелески и т.д., то есть не нарушать сложившийся в данной местности ландшафт. Ландшафтный подход позволяет обеспечить общий экологический приоритет в природопользовании, в соответствии с которым все виды использования природных объектов должны быть подчинены требованиям экологического благополучия окружающей природной среды.

3. Биопродуктивность. Данный признак способствует самовоспроизводству экосистемы, выполнению той или иной функции, что определяет в результате различный правовой статус природного объекта. Так, земли повышенного плодородия нужно отводить для нужд сельского хозяйства, а для других целей - малопродуктивные. Продуктивность также учитывают при установлении платы за пользование природным объектом, при налогообложении, в случае возмещения ущерба или наступления страхового события.


Пример экосистемы - пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворенных газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма.

Другой пример экологической системы - лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов.

Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.

Экосистема - это сложная, самоорганизующаяся, саморегулирующаяся и саморазвивающаяся система. Основной характеристикой экосистемы является наличие относительно замкнутых, стабильных в пространстве и времени потоков вещества и энергии между биотической и абиотической частями экосистемы. Из этого следует, что не всякая биологическая система может назваться экосистемой, например, таковыми не являются аквариум или трухлявый пень.

Такие системы следует называть сообществами более низкого ранга, или же микрокосмами. Иногда для них употребляют понятие - фация (например, в геоэкологии), но оно не способно в полной мере описать такие системы, особенно искусственного происхождения.

Экосистема является открытой системой и характеризуется входными и выходными потоками вещества и энергии. Основа существования практически любой экосистемы - поток энергии солнечного света, который является следствием термоядерной реакции Солнца, - в прямом (фотосинтез) или косвенном (разложение органического вещества) виде. Исключением являются глубоководные экосистемы («чёрных» и «белых» курильщики), источником энергии в которых является внутреннее тепло земли и энергия химических реакций.

В соответствии с определениями между понятиями «экосистема» и «биогеоценоз» нет никакой разницы, биогеоценоз можно считать полным синонимом термина экосистема. Однако существует распространённое мнение, согласно которому биогеоценоз может служить аналогом экосистемы на самом начальном уровне, так как термин «биогеоценоз» делает бо́льший акцент на связь биоценоза с конкретным участком суши или водной среды, в то время как экосистема предполагает любой абстрактный участок. Поэтому биогеоценозы обычно считаются частным случаем экосистемы.

В экосистеме можно выделить два компонента - биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества - консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1 - 1 %, редко 3 - 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

Обычно понятие экотоп определялось как местообитание организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и др. Однако, в этом случае это понятие фактически почти идентично понятию климатоп .

Например, изливающаяся в океан лава на острове Гавайи формирует новый прибрежный экотоп.

В настоящее время под экотопом, в отличие от биотопа, понимается определённая территория или акватория со всем набором и особенностями почв, грунтов, микроклимата и других факторов в неизменённом организмами виде. Примерами экотопа могут служить наносные грунты, новообразовавшиеся вулканические или коралловые острова, вырытые человеком карьеры и другие заново образовавшиеся территории. В этом случае климатоп является частью экотопа.

Биотоп - преобразованный биотой экотоп или, более точно, участок территории, однородный по условиям жизни для определённых видов растений или животных, или же для формирования определённого биоценоза.

Похожие статьи

© 2024 dvezhizni.ru. Медицинский портал.