Как работает качер бровина на транзисторе. Что такое качер Бровина


Среди радиолюбителей большой популярностью пользуется весьма интересное устройство, называемое «качером Бровина». С его помощью можно наблюдать эффектные коронные разряды, молнии, плазменные дуги. Многие люди в интернете называют качер катушкой Теслы, однако это два совершенно разных устройства с разным принципом работы. В этой статье речь пойдёт именно о качере Бровина, пожалуй, самом простом высоковольтном устройстве, которое только можно придумать.

Схема качера Бровина


Схема предельно проста, содержит всего лишь один транзистор, пару резисторов и пару конденсаторов. Конденсаторы служат для фильтрации питающего напряжения, один из них должен быть электролитическим с большой ёмкостью (470-2200 мкФ), а второй керамическим или плёночным с малой ёмкостью (0,1-1 мкФ), для сглаживания высокочастотных помех. Два резистора образуют делитель напряжения, один из них должен иметь небольшое сопротивление (150-200 Ом), а второй – примерно в 10-20 раз больше. При этом последовательно с высокоомным резистором можно поставить подстроечный резистор, чтобы настроить качер на максимальную длину разрядов. На печатной плате, прилагающейся к статье, для него предусмотрено установочное место. Транзистор в схеме можно использовать практически любой мощный структуры n-p-n. Хорошо себя зарекомендовали транзисторы КТ805, КТ808, КТ809. Также можно поэкспериментировать с полевыми и поставить, например, IRF630, IRF740. От выбора транзистора в значительной степени зависит длина разрядов. Транзистор обязательно нужно установить на радиатор, ведь на нём выделяется большое количество тепла. L1 на схеме – первичная катушка, а L2 – вторичная, с неё снимается высоковольтный разряд.

Плата устройства

Плата выполняется методом ЛУТ, файл для печати прилагается. Для подключения проводов питания и выводов катушек на плате предусмотрены клеммники.



Скачать плату:

(cкачиваний: 167)

Изготовление вторичной (высоковольтной) катушки

Первым делом, нужно изготовить вторичную катушку. С ней всё просто и конкретно – чем больше витков, тем больше напряжение, соответственно, длиннее разряды. Можно использовать медную эмалированную проволоку сечением 0,1 – 0,3 мм. В качестве каркаса для вторичной обмотки весьма удобно использовать канализационную трубу, оптимальный диаметр составляет 5-7 см. Наматывать проволоку нужно виток к витку, максимально аккуратно. Желательно использовать цельный кусок проволоки, чтобы не было мест соединений. Но если в процессе проволока порвалась – ничего страшного, можно подпаять к ней оторвавшийся кусок, тщательно заизолировать и продолжать мотать витки, работать будет в любом случае.


Для ускорения процесса намотки можно установить трубу на две подпорки слева и справа так, чтобы она свободно на них вращалась. При этом наматывать проволоку будет куда легче. Если в процессе работы появилась необходимость отлучиться, кончик проволоки можно зафиксировать скотчем, тогда можно будет вернуться, отлепить скотч и продолжать наматывать. Ни в коем случае не нужно отпускать кончик проволоки, иначе натяжение пропадёт, витки разойдутся и придётся начинать всё с начала.


После того, как катушка намотана, витки проволоки обязательно нужно зафиксировать на трубе. Лучше всего использовать прозрачный лак, тогда катушка будет выглядеть весьма красиво. Я обмазал витки обычным воском, со своей задачей он справился, теперь случайно повредить тонкую проволоку будет куда сложней.


К нижнему концу проволоки следует припаять обычный провод и тщательно его зафиксировать у края трубы.


У верхнего края трубы располагается так называемый «терминал» - то место, из которого будет «исходить» коронный разряд. Желательно сделать его острым, тогда разряд будет сконцентрирован на кончике иглы. Закрепил на краю трубы болт, а на болт накрутил наконечник от дротика, как видно на фото. Вторичная катушка готова.

Изготовление первичной катушки

Первичная катушка содержит 2-5 витков толстого медного провода, сечением 1,5 – 2,5 мм. Располагаться она должна вокруг вторичной катушки, её диаметр должен быть больше на 2-3 см. Для каркаса первичной катушки можно использовать, опять-таки, канализационную пластиковую трубу, нужно лишь взять отрезок трубы диаметром и длиной большей, чем для вторичной. На расстоянии 10 см от верха трубы сверлятся два отверстия, через которые продевается медный провод. От числа витков сильно зависит длина разряда, поэтому их количество подбирается экспериментально.


Провод от самих витков нужно вывести к низу катушки, проведя их внутри трубы. Обязательно зафиксировать клеем. Первичная катушка готова.

Сборка качера Бровина

После того, как катушки намотаны, можно собирать всё воедино. Из пеноплекса вырезаются два круглых куска с отверстиями по центру. В центральное отверстие должна плотно заходить вторичная катушка, а внешний диаметр заготовок должен соответствовать диаметру первичной катушки.


Помещаем круглые заготовки внутрь большой трубы, а затем просовываем в них же вторичную катушку. При необходимости нужно зафиксировать их клеем. Провод от вторичной катушки нужно вывести в нижнюю часть большой трубы.





В нижней части большой трубы сверлятся два отверстия, одно под разъём питания, второе под тумблер.


Теперь осталось лишь подключить плату к питанию, поставив в разрыв плюсового провода тумблер, и подключить выводы катушек.


Когда все провода подключены, можно проверить работоспособность устройства. Аккуратно подаём на плату напряжение. Если на терминале появился маленький разрядик – значит качер работает. Если же качер отказывается работать даже при повышении напряжения питания – следует поменять местами выводы первичной катушки. Теперь можно поэкспериментировать с числом витком в первичной катшеке, подвигать катушки относительно друг друга, найдя такое положение, при котором разряд будет максимальным. Диапазон напряжения питания качера весьма широк – небольшой разряд появляется уже при 12 вольтах. При повышении напряжения он увеличивается, вместе с ним увеличивается и тепловыделение на транзисторе. Поэтому обязательно нужно следить за температурой радиатора, ведь перегретый транзистор долго не проработает.
В последнюю очередь остаётся лишь установить плату с радиатором внутри большой трубы, в нижней её части, поставить тумблер с разъёмом в уже просверленные отверстия.




Выглядит такой качер весьма эффектно даже в выключенном состоянии. Коронный разряд можно потрогать пальцем, это вполне безопасно, ведь ток от такого разряда течёт по поверхности кожи, не проникая внутрь. Этот эффект называется скин-эффектом, возникает он из-за высокой частоты работы качера. При долгой работе выделяется большое количество озона, поэтому включать качер следует только в проветриваемых помещениях. Также не стоит забывать про сильное электромагнитное излучение, которое создается вокруг устройства. Оно способно выводить из строя другие электронные устройства, поэтому не стоит оставлять рядом телефоны, фотоаппараты, планшеты. Создаваемое электромагнитное поле настолько сильное, что газоразрядные (или, проще говоря, энергосберегающие) лампочки зажигаются сами по себе вблизи катушки.

Развлечения с высоким напряжением доставляют много удовольствия и мало пользы. Это значит нам обязательно нужно собрать что-нибудь такое. Наверное, самая простая схема питания катушки Тесла - это качер Бровина. Его можно собрать на лампе, на обычном или полевом транзисторе. Схема неприхотливая - работает без настройки.

Вокруг кечера Бровина ходят много легенд из-за нестандартной схемы подключения транзистора, который работает в запредельных режимах - совершает пробой внутри себя и сразу же восстанавливается. Не будем описывать сухую теорию, нам нужен лишь результат.

Приведу две схемы подключения качера.
Для транзистора NPN:


Для полевого транзистора:


Решено было собирать вторую схему на полевом транзисторе т.к. других мощных тразнисторов под рукой не было.
Моя схема состояла из: резистора R2 - 2 кОм, резистора R1 - 10 кОм, полевого транзистора VT1 - IRLB8721 (был закреплен на мощном радиаторе т.к. он сильно греется). Схема питалась от 12 Вольт.



Вторичную катушку мотал на канализационной трубе тонким проводом. Примерно 800 витков. Зажал трубу в шуруповерт и наматывал столько сколько влезет.


Первичную обмотку сделал 1,5 витка толстого медного провода. Диаметр намотки лучше делать больше, чем вторичка. Положение и количество витков лучше подбирать опытным путем, что бы подобрать максимальную отдачу по напряжению.


Увеличение мощности разрядов можно добиться не только настройкой антенны, подбором резисторов, но и подключив на вход питания мощный дроссель с конденсатором большой емкости. Повышение питающего напряжение пропорционально увеличивает длину разрядов.


Кечер получился не супер мощный, но для баловства хватило. В воздухе прошибал до 7 мм. Уверенно зажигал газоразрядные лампы в 20 см от обмотки, давал красивые коронарные разряды в лампах накала.






Решено было опробовать первую схему на транзисторе КТ805АМ с теми же номиналами резисторов, что для полевого (2 кОм и 10 кОм). На удивление мощность разрядов возросла в два раза, а в воздухе стабильно горел коронарный разряд. Раз так поперло - оформил установку в виде готового устройства.

Вступление и общий принцип работы Качера Бровина

Качер Бровина — это разновидность блокинг-генератора электрических импульсов со сравнительно высокой частотой. Устройство может быть собрано на различных активных элементах, но чаще всего при сборке применяют биполярные или полевые транзисторы. Данный прибор был изобретен инженером Владимиром Ильичом Бровиным в 1987 году. Причем изобретен скорее случайно – Бровин разрабатывал электромагнитный компас, который позволял бы определять стороны света при помощи звука. И в качестве звукового генератора инженер использовал спроектированный им блокинг-генератор с цепью обратной связи. Компас заработал. Но в работе блокинг-генератора были замечены определенные расхождения с некоторыми законами физики (например, с законами Ампера и Био Савара, а также с законом Кирхгофа). Так и появился качер.

Название для своего изобретения Бровин придумал в 1996 году на основе слов «качатель реактивностей». Автор изобретения объясняет принцип работы этого или просто-качера Бровина следующим образом:

В обычном блокинг-генераторе транзистор открывается за счет протекания тока из катушки обратной связи в базовой цепи транзистора. В качере же он неочевидным способом (т.к. в теории появление электродвижущей силы в катушке обратной связи все же может открыть транзистор) будет все время закрыт, а ток образуется за счет накапливания электрических зарядов в базе транзистора для дальнейшего разряда при превышении некоего порогового напряжения (т.н. «лавинный пробой»).

Мнений и отзывов об этом изобретении существует великое множество: от восторженных до скептических. Вот мнение самого изобретателя, взятое с форума http://club.1-info.ru (авторские орфография и пунктуация не сохранены):

Качер – транзисторное (радиоламповое) устройство с феноменальными качествами. Дешевое (стоимость устройства — меньше 1$) и не требующее особых технологий. Знаний о свойствах качеров достаточно для повсеместного применения практически в любых отраслях, включая балет.

С 2005 года тема качеров обсуждалась на множестве форумов (наберите в поисковике «Бровин Владимир Ильич»). Оппозиция полностью подавлена, обращайте внимание на даты — плевки идут до 2006 г.

Признание факта существования нового способа управления транзистором налицо.

Нет применения на практике (есть, но совсем мало). Не пора ли начать, господа предприниматели, на этом зарабатывать, а вам, госдеятели, собирать налоги?

Предваряя вопрос «Почему не сам»? отвечаю: «Потому что 68-й пошел. Поздно, доктор». «Что делать?». Выбрать тему — например, «автоэлектроника» — создать лабораторию и все, что есть электрического в автомобиле, а также в технологии его производства начать переделывать на качеры.

Возможно, когда-нибудь так и будет, но пока изобретение Бровина – лишь забавная игрушка для энтузиастов, не нашедшая массового применения в электронике или промышленности. Теперь перейдем от теории к практике – сделаем качер Бровина своими руками .

Ниже представлена одна из схем данного качера:

Для изготовления качера Бровина нам понадобятся следующие детали:

  • — 1 ферритовое кольцо (высота 0,7-0,8 см, наружный диаметр 1,5-2 см, внутренний диаметр 0,5-0,7 см);
  • — 1 подстроечный резистор на 220Ом 0,25Вт (R1);
  • — 1 резистор на 1кОм 0,5Вт (R2);
  • — 2 транзистора КТ805 (с радиаторами) (VT1, VT2);
  • — 1 выпрямительный диод 1А;
  • — 1 конденсатор 10000 мкФ 50В;
  • — обмоточный провод, толщиной 0,25 мм;
  • — медный провод квадратного сечения, толшиной 1,5 кв. мм (для первичной катушки);
  • — провод квадратного сечения, толщиной 0,5 кв. мм;
  • — небольшой кусок пластиковой (можно картонной, но не металлической или металлопластиковой!) трубки, обычная сантехническая труба толщиной 1-1.5 см и длиной 20-30 см вполне подойдет;
  • — трубка, толщиной 4-7 сантиметров (для первичной обмотки, можно взять пол-литровую пластиковую бутылку);
  • — дощечки для изготовления подставки.

Этапы сборки качера Бровина

  1. 1. Для первичной катушки берем медный провод квадратного сечения и мотаем его на любой трубке диаметром 4-7 сантиметров – делаем 4 витка. Вынимаем трубку, растягиваем провод в длину так, чтобы высота обмотки получилась 10-15 сантиметров (примерно треть от высоты вторичной катушки). Готово.
  2. 2. Для вторичной катушки мотаем тонкий обмоточный провод вокруг пластиковой трубы, делаем 800-1000 витков. Через каждые несколько сантиметров рекомендуется наносить на свежие витки клей, иначе обмотка может сбиться и перепутаться. Устанавливаем первичную обмотку вокруг нижней части вторичной катушки (см. фото ниже).
  3. 3. Остальные элементы собираем по схеме. Трубу необходимо закрепить в вертикальном положении, для этого ее торец можно приклеить к основе (дощечке или даже ненужному DVD-диску). Если схема не заработала, попробуйте поменять местами выводы первичной катушки. Должно помочь.
  4. 4. Настройка собранного качера осуществляется регулировкой подстроечного резистора R1. Также не забудьте на транзисторы установить радиаторы – греются они довольно сильно.

Собрали? С замиранием сердца подносим к катушке энергосберегающую лампу.

Но указанный вариант – не единственно возможный. Энтузиастами и самим Бровиным было разработано множество схем, с различными транзисторами, двумя или тремя катушками и т.п.

YOUR WEBSITES NAME

Схемы качеров

Теперь, сама катушенция. НЕ советую экспериментировать с более тонким проводом для L1! Только такой, как показано на схеме. Для увеличения связи во вторичкой, можно его лишить изоляции. Только лаком покройте. Иначе потемнеет медь. А она быстро потемнеет при протекании напряжения. Просто красиво, когда голая медь блестит. Мне нравится. Расстояние первички от вторички должно быть 1см, не менее и не более. Если больше, коэффициент связи будет хуже. Если слишком близко - прошивать будет, сгорит транзистор. Шаг намотки - полсантиметра. У меня - 4 витка. Этого вполне достаточно. Теперь вторичка. Намотана она на белой пластиковой тУбе от герметика. И диаметр подходящий и высота. И ничего отпиливать не надо. Только лишь горлышко с резьбой отрезать. Я экспериментировал с разными сечениями провода. У меня получалось и с 0,34 и с 0,57мм. Но лучшие результаты качер показал на сечении провода вторички на 0,34мм. Ток в стриммер катушка отдаёт не такой большой и транзистор не так сильно нагружается. А стриммер, когда вы пальцы подносите к нему, получается похожим на осьминога, протягивающего к жертве свои щупальцы, с жёлтыми огоньками на кончиках. Прикольно. Только, для достижения такого эффекта длинных стриммеров с жёлтыми огоньками, нужно первичку поднять по вторичке почти на середину. Но, внимательно следите за сопротивлением R1! Лучше сразу расположить таким образом и уже регулировать R1, начиная с наибольшего сопротивления. Если не получается, то оставьте первичку внизу вторички традиционно. Теперь отладка питания. Поскольку, сетевое напряжение в домах у нас, мягко говоря, разное, регулируем напряжение смещения базы транзистора R1 так, чтобы пропало гудение стриммера и начался треск. Если гудит, то сопротивление потенциометра R1 мало. Напряжение смещения большое и транзистор сильно греется. Если не включается качер - сопротивление велико. Нужно сопротивление выбрать так, чтобы треск был, но не исчезал, когда мы подносим ладонь к стриммеру. Дело в том, что система очень нестабильна и рабочая частота изменяется, когда мы руку подносим из-за изменения ёмкости вторички. Вот, собственно и всё. Напоследок могу посоветовать, обзавестись всё таки, несколькими транзисторами. Потому как, спалите обязательно транзистор. Не получится с первого раза. Я их спалил штук тридцать, пока научился, при настройке, чувствовать качер. Благо они у нас, в Хабаровске по 42 рубля всего. Почему всего? Да потому что я ведь экспериментировал и с дорогими IGBT-транзисторами даже! Вот они-то стоят о-го-го! 430 рублей штука! А горят моментально. Очень капризные. Хотя, напряжение базы (Gate) у них 20 вольт, в отличие от MJE13009 с его 9 вольтами….

А теперь, рассмотрим схемку такого же качера, но уже на мосфете IRFP460. О мосфетах (полевых транзисторах с изолированным затвором) могу сказать лишь одно: капризные гады! Но! Ежели их всётаки применить и отстроить схему, то они работают намного эффективнее своих сородичей по полупроводниковому пантеону - биполярных транзюков. Они более высокочастотны, более линейны на высоких частотах. У них более, как любят выражаться теславики: "лёгкие" управляющие электроды - затворы, Более лёгкие, чем у биполярников. И большая пропускная мощность, поскольку управляются полевые транзисторы не током, как биполярные, а напряжением. А на выходе - ток. И ток нехилый! Вот такая вот, противоречивая статья. А итог один. Биполярные транзисторы более дёшевы. Поэтому, для начинающего качеростроителя - в самый раз. Да и не только для качеров они неплохи на первых порах. Я поначалу их прекрасно использовал и для полумостовых схем катушек. Но всётаки, полевой транзистор в качере - это что-то! Ну вот, в данной моей схеме я применил IRFP 460. Но немного лучшего результата (длины стриммера) можно достичь мосфетом с литерой "H". Как видите, схема, а вернее, её номиналы, на самом деле, существенно отличаются от опубликованных в нете. Для чего это у них сделано, думаю, догадываетесь... Чтобы вы не повторили их схемы. Я все свои схемы отрабатывал и испытывал. У меня "все ходы записаны" . Схемы мои правдивы. Сам изменял номиналы, сам паял, сам испытывал. Удачи вам;-)

Большинство схем качеров опубликованных в нете, к сожалению, часто бывают попросту нерабочие. Это происходит по нескольким причинам. Первая: Нежелание делиться собственной разработкой с другими. Вторая: Теоретические измышления, часто не подтверждённые практическими опытами. Берут тупо, чуток с одной схемы, чуток с другой. Типа, я сам разработал. В результате, выгорают дорогие транзисторы, пока начинаешь понимать «а король-то голый!»…. Вот, и я шёл таким же опытным путём проб и ошибок. И пришёл к занятнейшим результатам! Кристалл транзистора, работающий в качере в качестве электронного разрядника с обратимым пробоем, ведёт себя довольно непредсказуемо. Но! Мне всё-таки удалось выявить почерки некоторых транзисторов и их закономерности выгорания в столь нестабильном устройстве! Никакие Мосфеты, или IGBT не выдерживают таких варварских режимов работы! Только биполярники! И среди них, наибольшей стойкостью к выгораниям и наибольшей стабильностью к многократным включениям питания обладают высоковольтные переключающие биполярные транзисторы MJE13009. Не перепутайте с ST13009, или с иными буквами… Кстати, у ST13009 напряжение базы, казалось бы, 12 вольт, в отличие от MJE13009 с его 9 вольтами напряжения база-эмиттер, однако, MJE показал просто-таки спартанскую выносливость к выгораниям. Нет, конечно, горит и он, но ведь и у нас руки не из попы растут! Но! транзюк обязательно на радиатор ставим! И нежненько, аккуратненько, регулируем потенциометром R1 напряжение смещения базы транзистора. Сопротивление делаем максимальным, включаем питание и постепенно, начинаем его уменьшать, не забыв поставить рядом с катушкой неонку, для индикации начала работы качера без стриммера. Если качер так и не включился - поменяйте полярность первички, не забыв поставить опять максимальное сопротивление R1 (нижнее положение стрелки). Питание только от автотрансформатора на 110 вольт. Не более! Горит транзистор, при большем напряжении питания…Как бы мы ни уменьшали напряжение смещения, транзистор или просто не включается, или сразу перегорает. И диод именно такой!
Поставите другой - не попрёт! Если на меньший ток поставите - сгорит, сделает КЗ и спалит транзистор… И ещё: Выпрямитель - только такой, однополупериодный. Он играет роль и делителя напряжения и самое главное - прерывателя. Засчёт этого и разряд такой трескучий и красивый. Поставите двухполупериодный выпрямитель и «веник» разряда будет тихий, пушистый. И греться транзистор будет неслабо! В общем, никакого эффекта. Только кайф обломаете;-) .

Мой качер собран по схеме:

Все катушки имеют диаметр 5 см . Можно использовать различный диаметр и другое количество витков, но всё это влияет на работу, качер может совсем не запуститься, поэтому, если Вы делаете в первый раз, то лучше придерживаться схемы, а потом можно будет и поэкспериментировать.

А вот и видео:

Наилучший результат (светодиод загорался при наибольшем расстоянии между обмотками) показал транзистор 9014 . Устройство устойчиво запускалось также на следующих npn транзисторах:


Наиболее ярко светодиод горит при приближении катушки L3 к коллекторной катушке L2, но слабое свечение наблюдается даже при поднесении L3 к базовой катушке L1. Соприкосновение всех трёх обмоток усиливает свет светодиода, как заметно на видео, причём L1 должна быть расположена определённой стороной, в противном случае никакого эффекта усиления от трёх обмоток не будет.
Данный качер не является самозапускающимся , поэтому я использовал кнопку для замыкания базы с плюсом источника питания. Замыкание должно быть кратковременным, кнопка не фиксируется!

В такой сборке загорались только красный и зелёный кристаллы трёхцветного светодиода. При замене L1 на дроссель, синий кристалл начал светиться! Вот это показывается:

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Прямая ссылка на видео: http://www.youtube.com/watch?v=9PUGn5M4lKQ - Катушка индуктивности в качере для зажигания синего LED.

При использовании данного качера становится возможным питание светодиода по одному проводу! Светодиод я использовал белый от подсветки экрана N79. Схема такая:


На видео ниже показан этот эффект. Там использовалась левая схема, но потом я разработал более эффективную, заменив обмотку и конденсатор на второй диод:

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Прямая ссылка на видео: http://www.youtube.com/watch?v=2kAtTMOf5TA - Питание светодиода по одному проводу от качера.

Диоды подходят только как на видео, в стеклянном корпусе, чёрные с серым минусом не подходят!

Если в первой схеме последовательно со светодиодом включить такой стеклянный диод, то светодиод начинает загораться при расстоянии между L2 и L3 равном 8 см. Без диода это расстояние 5 см.

А также будет загораться синий светодиод без замены обмотки на дроссель.

В холостом режиме качер потребляет ток 0.01А, при зажигании светодиода ток примерно 0,02А.

Конденсатор заряжается от L3 до 34 вольт.

И ниже вставил видео самой последней сборки, где диаметр обмоток уменьшен до 14 мм , L3 имеет 30 витков , добавлено 2 диода, убран конденсатор и обмотка:

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Потом я объединил качер Бровина с трансформатором Тесла , добившись передачу электричества , достаточной для работы ламп накаливания без проводов !

Ниже видео и подробное описание.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Две катушки по 193 витка на каждой, намотаны на бочонки из под фотоплёнки диаметром 32 мм. Первичка - 2 витка диаметром 50 мм.

Питание 16 В. Используется транзистор 5ВА4 (КТ815В) . Незначительно меньший результат даёт 8АМ0 (КТ683А). Транзистор C3063 работает, но намного хуже (люминесцентная лампа бледно и частично светится, генерация прерывается при близком поднесении лампы к катушке).

Из pnp отличный результат даёт: КТ814В.

При питании до 3.7 В можно использовать транзистор С9014, но мощность будет маленькая, хотя и лучше чем у C3063 при 16 В.

Схема запускается прикосновением руки или металлического предмета к базе транзистора.

Если требуется самозапуск , то будет достаточно добавить резистор между базой и плюсом, при этом что-либо другое менять, как на схеме ниже, не обязательно.


Некоторые пояснения по видео и наблюдения, не вошедшие в него.

Стример легко поджигает бумагу. Если требуется передавать энергию на расстоянии, то от стримера нужно избавиться, например приварить к верхнему концу катушки неизолированную проволоку. При стримере яркость лампы меньше, чем без стримера при тех же условиях.

Маленькая лампа накаливания на 13.5В 0.16А.

Большая лампа 220В светится ярче при питании без проводов, чем при подключении к блоку питания, от которого питается устройство.

Алюминиевый диск можно заменить на металлическую пластину любой толщины.

Присоединение заземления к диску, при недостаточно хорошей настройке в резонанс, увеличивает яркость лампы, а при хорошей настройке (когда яркость лампы максимальная), наоборот уменьшает яркость. При определённых настройках, особенно, когда расстояние между катушками было небольшим и рука лежала на пассатижах, присоединение заземления не вызывало изменения яркости лампы.

Можно отсоединить конец лампы от диска и заземлить его, при этом лампа начнёт светиться, но всё - равно будет очень чувствительна к расстоянию между обмоткой и диском, потребуется большее приближение диска.

Настраивать резонанс очень удобно тисками , приклеив к ним диск, либо используя сами тиски вместо диска, но в этом случае эффективность меньше.


Если взять лампу двумя пальцами за резьбу, а второй контакт подсоединить к нижнему проводу от катушки, то, при определённом расстоянии между диском и катушкой, лампочка загорится в пальцах, но не очень ярко.

Максимальное расстояние, при котором видно свечение нити накала маленькой лампы - 50 сантиметров. При отдалении до 15 см яркость лампы не меняется, далее начинает линейно падать.

Красный светодиод с обмоткой L3 из предыдущего опыта, включенный вместо лампы, продолжает светиться даже на расстоянии 240 см при заземлении или прикосновении к диску рукой, при соответствующей настройке резонанса. В другом случае даже без заземления или моей руки светодиод светился до расстояния 170 см, между катушкой и светодиодом стоял диод.

При поднесении рук или металлической ленты рулетки одновременно к двум катушкам светодиод начинает довольно ярко светиться даже в том случае, когда расстояние между катушками уже не позволяет передавать достаточно энергии для свечения.

После отключении блока питания от розетки, когда он продолжает работать автономно около секунды, яркость лампы увеличивается.

Собрал ещё одно устройство , подобное первому. Не уверен, что это качер, но очень похож. Использовался полевой транзистор IRF640A и IRF630A. Обмотка со средним выводом. Пробовал на 4 - 16 витках. Меньше 4-х не работает, больше 16-ти должно работать. Толщина провода любая. Мотается 8 витков, выводится средний вывод и продолжаем мотать ещё 8 витков в том же направлении тем же диаметром 6 см. Должно получиться кольцо из проволоки, как на первом видео, но с 3-мя выводами. Ток снимаем другой обмоткой с таким же диаметром. Без нагрузки на близком расстоянии мультиметр зашкаливает по напряжению, светится подключённая неонка. Довольно ярко горит лампа на 13,5 В 0,16 А. Для большей яркости лампу можно подключить через диод Шоттки. Начинает светиться с расстояния 3 см между катушками, светодиод с 8-ми см. Частота 200 кГц.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Транзисторы нагреваются слабо. Для полевого транзистора можно использовать меньший радиатор. Тот, который на видео, совсем не нагревается.

Похожие статьи

© 2024 dvezhizni.ru. Медицинский портал.